Python for Data Science



Course Reference No: CRS-N-0046392

Courses_Calendar_83x95

Course Objectives

New libraries for data manipulation, visualisation and data modeling have made Python an increasingly exciting alternative to R as a data science language.

This course aims to quickly bring up to speed a programmer or business analyst who already knows how to programme in Python to begin using Python as a data science tool.

This course introduces basic Python programming and community best practices such as using Jupyter/Python. The course then moves on to show how Python can be applied to data mining, analytics, data science and artificial intelligence projects. At the end of this course, participants will gain an overview of the Python ecosystem as well as the skills necessary to self-learn and continue on their Python learning journey.

The course will define data science and explore the first two things a data scientist must do – cleaning and visualising data. It will then cover the Data Science Workflow - training models and testing them through the application of machine learning models to various industry-relevant data science problems. The tools used will be Anaconda, Jupyter Notebook and Scikit-learn.

At the end of the course, participants will be able to:

  • Use Python for basic data munging to aggregate, clean and process data from local files, databases, and online
  • Create visualisation with Matplotlib, Pandas.plot, and Seaborn
  • Create basic to intermediate analytics models with Python/Sckit-learn
  • Using the above tools within the context of solving essential data science problems
  • Applying Python tools to import data from various sources, explore them, analyse them, learn from them, visualise them, and share them
 

Outline

Day 1
  1. Python Basics (I): Python Environments
    1. Python statement and operation
    2. Variable Assignment
    3. Functions and Classes
  2. Python Basics (II)
    1. Lists and Dictionaries
    2. Conditional and looping statement
    3. File Input/Output
    4. Managing Python Environments and Packages
  3. Working with Data Sources
    1. Reading CSV
    2. Web Scraping
    3. Interacting with local and remote databases (ODBC)
    4. Reading from HTML
  4. Mini-Project: Making a Data Product with Python and Jupyter
Day 2
  1. Data Exploration and Wrangling
    1. Series/Data frame
    2. Data cleaning
    3. Data analytics e.g., Descriptive statistics using Python
  2. Data Visualization with the matplotlib
    1. Basic visualization technique
    2. Creating visualization tools using matplotlib
  3. Introduction to key Data Science
    1. Data analytics process: Supervised and Unsupervised Learning
    2. Regression and Classification using Sci-kit Learn
  4. Mini-Project (and/or) Recap: Creating data visualization and data analytics product

Tools

Anaconda, Jupyter Notebook, Scikit-learn

Pre-Requisites

Must be familiar with the Python programming language, or have attended the Introduction to Python training and statistics 101 at a pre-university level.

Who Should Attend

Business Analysts, Data Analysts, Software Engineers, Programmers

Mode of Training

Classroom

Speaker

Dr Julian Lin

Dr. Julian Lin is a Senior Lecturer in Cybersecurity and Data Analytics with School of Continuing and Lifelong Education (SCALE) at the National University of Singapore (NUS).  He is a Certified Information Systems Security Professional (CISSP) and has a dozen other IT certifications. Recently, Julian was ranked 6th in the Microsoft Data Science Capstone Competition. He has been conducting text-analytics research since 2010 and teaching  visualization since 2007. 

During his IT consultancy career, he oversaw the application and infrastructure projects in Amoseas,  Mannesmann Dematic Colby (Sydney), Alcatel (Sydney), and the University of New South Wales (UNSW) Faculty of Commerce and Economics. Julian has taught programming and data management for business at UNSW.  At NUS, he had mentored student software development projects and taught visual communications, designing new media content, and research methods. He was given a  teaching award for visualization class and research award for user acceptance research in NUS. 

Julian obtained a PhD degree in Information Systems from NUS.  He was a recipient of two scholarships from the Overseas Chinese Association in Taiwan while pursuing his Bachelor degree and another scholarship while pursuing a Master degree in Australia.
Speaker

Dr Edmund Low

 

Dr Edmund Low is a lecturer with the University Scholars Programme (USP) at the National University of Singapore. He teaches courses on engineering, statistical methods, data science and analytics. He currently heads the quantitative reasoning domain, and is also director of the Quantitative Reasoning Centre, at USP. He has organised / co-organised programming workshops and data hackathon for students. As an educator, Edmund has received both the USP Teaching Excellence Award, as well as the NUS Annual Teaching Excellence Award. He has more than 13 years of academic and professional experience in the use of computational modelling and data-driven tools, applying them to solve problems in public health, water resource management and air quality in buildings. Edmund holds a PhD in Environmental Engineering from Yale University.

Speaker

Mr. Koo Ping Shung

 

Mr. Koo Ping Shung is an experienced Data Scientist with more than 13 years of relevant experience. He is also currently a Adjunct Senior Faculty with the Singapore University of Social Sciences (SUSS) and a SAS Trainer as well. To date, he has conducted over 1,600 man-hours of data science training. He is also the mentor to the trainees accepted into the IMDA-SAS BIA Programme for 5 intakes.

Ping Shung was a guest lecturer at NUS Institute of Systems Science and previously held an adjunct position in School of Information Systems, Singapore Management University.

Prior to this, he was the Analytics Practicum Manager of the Master of IT in Business (Analytics) at the Singapore Management University School of Information Systems. He managed the industrial relationships through projects and attachments. He often advised companies on the type of data analytics projects they can work on with their data and is a co-supervisor for many Masters students on their data analytics capstone projects. He was an instructor for the DBS Graduate Associate Programme for 3 years, teaching over 200 Graduate Associates on data analytics and received positive ratings. He has also trained professionals from various companies on data analytics and the use of SAS software.

Ping Shung was a facilitator for the IDA Data Science MOOC programme for 2 cohorts (over 300 professionals) and participated in Singapore's first Data Literacy Bootcamp which was co-organised by the IDA Singapore and The World Bank.

Ping Shung through his career has gathered much experience on statistical modeling, from working in the banks, supervising Masters students and doing education research. His data analytics experience range from a wide variety of business functions and industries, gathered from talking to companies or working on data analytics projects.

His strong passion in data analytics and data science can be seen through his involvement in data analytics interest groups, being a Co-founder of DataScience.Sg and former Working Committee Chairman of SAS User Group Singapore and Data Ambassador for one of the DataKind SG project. He also read widely on the different topics related to data science and artificial intelligence, keeping himself up-to-date with their development.

His research interest lies in how data science can help organisations and businesses to be more efficient and effective.

Ping Shung holds an MBA from University of Adelaide. He obtained his bachelor degree in Economics from National University of Singapore, with a minor in Computational Finance.

DATE

02 - 03 Dec 2020
28 - 29 Jan 2021 (FTF)

DURATION

2 Days
9.00am to 5.30pm 
(Daily)

VENUE

National University of Singapore
University Town

International Participants

S$2,033.00

Incl. GST

Singapore Citizens (39 yrs old or younger) or Singapore PRs

S$609.90

Incl. GST

Singapore Citizens(40 yrs or older)

S$229.90

Incl. GST

Enhanced Training Support for SMEs

S$229.90

Incl. GST

Fees & Fundings

International
Participant
Singapore Citizen1
39 years old or younger
Singapore Citizen1
40 years or older eligible for MCES2
Singapore PRs Enhanced Training
Support for SMEs3
Full Programme Fee S$1,900.00 S$1,900.00 S$1,900.00 S$1,900.00 S$1,900.00
SkillsFuture Funding
(Refer to Funding Page for Claim Period)
- (S$1,330.00) (S$1,330.00) (S$1,330.00) (S$1,330.00)
Nett Programme Fee S$1,900.00 S$570.00 S$570.00 S$570.00 S$570.00
7% GST on Nett
Programme Fee
S$133.00 S$39.90 S$39.90 S$39.90 S$39.90
Total Nett Programme
Fee Payable, Incl. GST
S$2,033.00 S$609.90 S$609.90 S$609.90 S$609.90
Less Additional Funding if
Eligible Under Various Scheme
- - (S$380.00) - (S$380.00)
Total Nett Programme Fee, Incl. GST,
after additional funding from the various funding schemes
S$2,033.00 S$609.90 S$229.90 S$609.90
S$229.90


  1. All self-sponsored Singaporeans aged 25 and above can use their $500 SkillsFuture Credit to pay for the programme. Visit http://www.skillsfuture.sg/credit to select the programme. 
  2. Mid-Career Enhanced Subsidy (MCES) - Singaporeans aged 40 and above may enjoy subsidies up to 90% of the programme fee. 
  3. Enhanced Training Support for SMEs (ETSS) - SME-sponsored employees (Singaporean Citizens and PRs) may enjoy subsidies up to 90% of the programme fee. For more information, visit http://www.ssg.gov.sg/programmes-and-initiatives/training/enhanced-training-support-for-smes.html?_ga=2.154478072.1748789781.1519700056-512306731.1519700056
  4. Eligible organisations (excluding government entities) may apply for the absentee payroll funding via SkillsConnect at www.skillsconnect.gov.sg for Singaporean/permanent resident participants attending the programme during working hours. The absentee payroll funding is computed at 80% of hourly basic salary capped at $4.50 per hour or $7.50 per hour for SME. For more information, visit https://www.skillsconnect.gov.sg/sop/portal/e-Services/For%20Employers/AbsenteePayroll.jsp
  5. Eligible individuals may apply for training allowance capped at $6/hr under the WSS scheme, visit- https://www.wsg.gov.sg/programmes-and-initiatives/workfare-skills-support-scheme-individuals.html for more information on WSS.
  6. NTUC Training Fund (SEPs) – All self-employed (i.e. freelancers and sole-proprietors-with-no-employee) Singaporeans and Permanent Residents are eligible to apply for the NTUC Training Fund (SEPs) from NTUC’s Employment and Employability Institute (e2i). Click here for more information.
NTUC members enjoy 50% of the unfunded course fee support for up to $250 each year for courses supported under UTAP (Union Training Assistance Programme). Terms and Conditions apply. Please visit http://skillsupgrade.ntuc.org.sg
Sign Up Now
 
05 November 2020